Ensembles for multi-target regression with random output selections
نویسندگان
چکیده
منابع مشابه
Multi-target regression with rule ensembles
Methods for learning decision rules are being successfully applied to many problem domains, in particular when understanding and interpretation of the learned model is necessary. In many real life problems, we would like to predict multiple related (nominal or numeric) target attributes simultaneously. While several methods for learning rules that predict multiple targets at once exist, they ar...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملEnsembles of Extremely Randomized Trees for Multi-target Regression
In this work, we address the task of learning ensembles of predictive models for predicting multiple continuous variables, i.e., multitarget regression (MTR). In contrast to standard regression, where the output is a single scalar value, in MTR the output is a data structure – a tuple/vector of continuous variables. The task of MTR is recently gaining increasing interest by the research communi...
متن کاملRandom Subspacing for Regression Ensembles
In this work we present a novel approach to ensemble learning for regression models, by combining the ensemble generation technique of random subspace method with the ensemble integration methods of Stacked Regression and Dynamic Selection. We show that for simple regression methods such as global linear regression and nearest neighbours, this is a more effective method than the popular ensembl...
متن کاملMulti-target Regression via Random Linear Target Combinations
Multi-target regression is concerned with the simultaneous prediction of multiple continuous target variables based on the same set of input variables. It arises in several interesting industrial and environmental application domains, such as ecological modelling and energy forecasting. This paper presents an ensemble method for multi-target regression that constructs new target variables via r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2018
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-018-5744-y